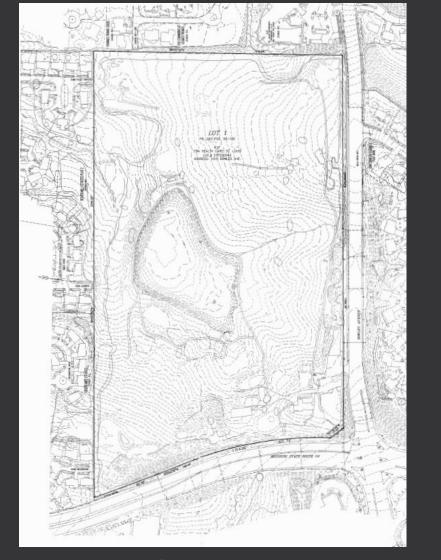
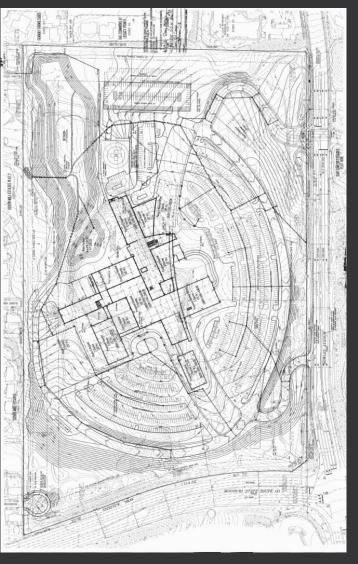
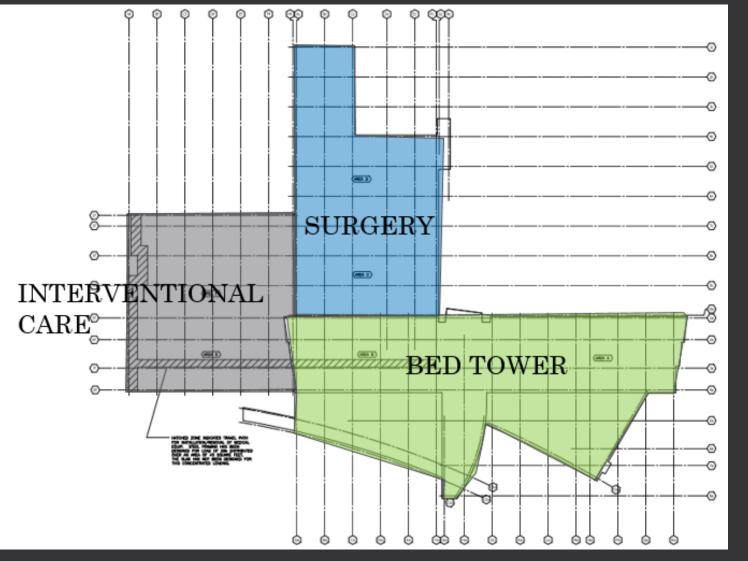

- Final Thesis Presentation
- Christopher Brandmeier
- Advisor: Dr. Aly Said, Dr. Linda Hanagan


- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Existing Site and Structure


- Overview of Site and Existing Structure
 - Site Plan
 - Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

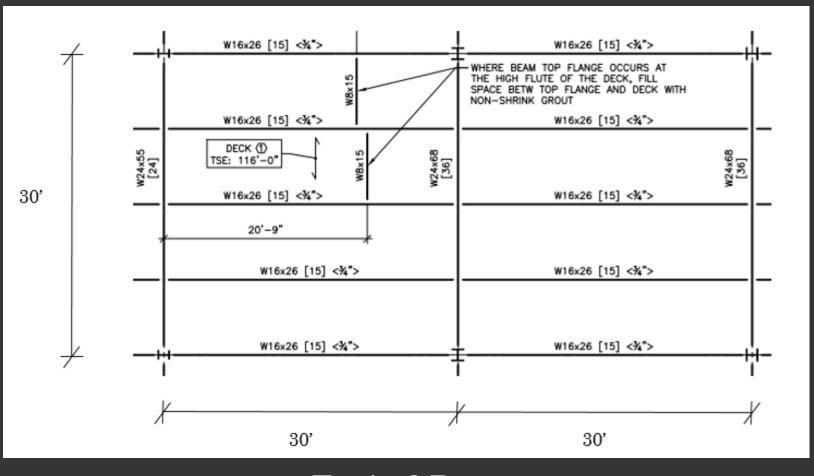
Site Location



Pre-Construction

Post-Construction

- Overview of Site and Existing Structure
 - Site Plan
 - Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

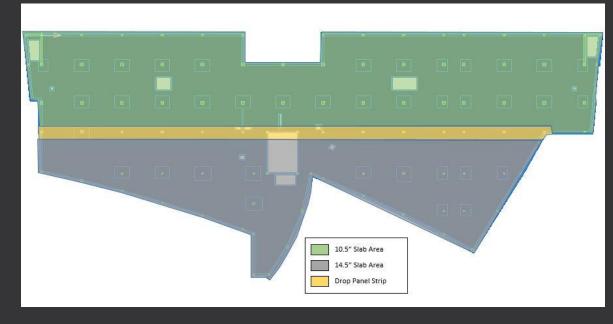

Structurally Isolated Building Segments

Structural Grid, Typical Bays

- Overview of Site and Existing Structure
 - Site Plan
 - Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

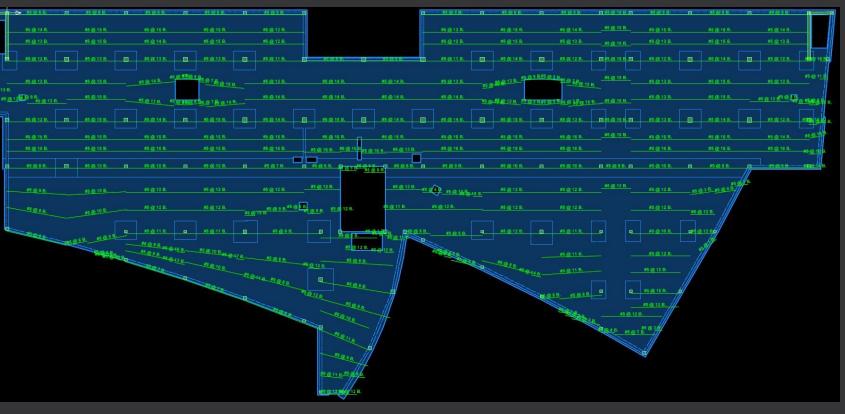
- Composite Steel Frame
- W16x26 Beam
- W24x55 Girder
- 3" Composite Deck (typ.)
- 3" Lightweight Concrete Topping (typ.)

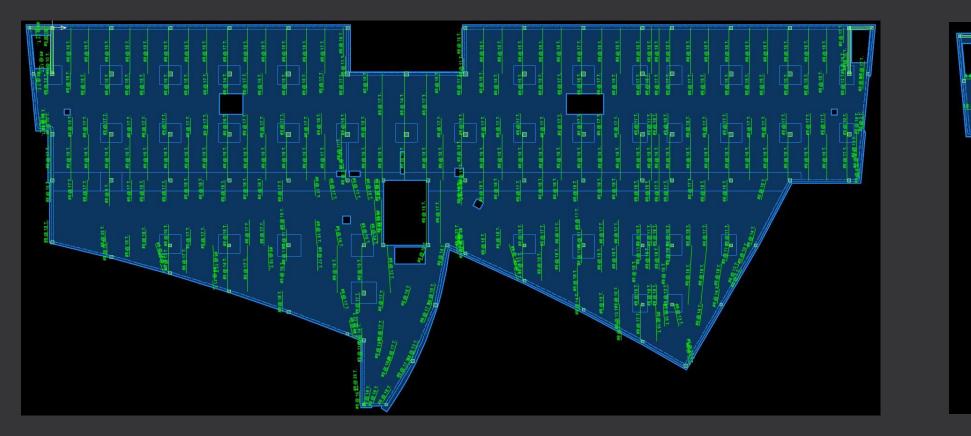
Typical Bay

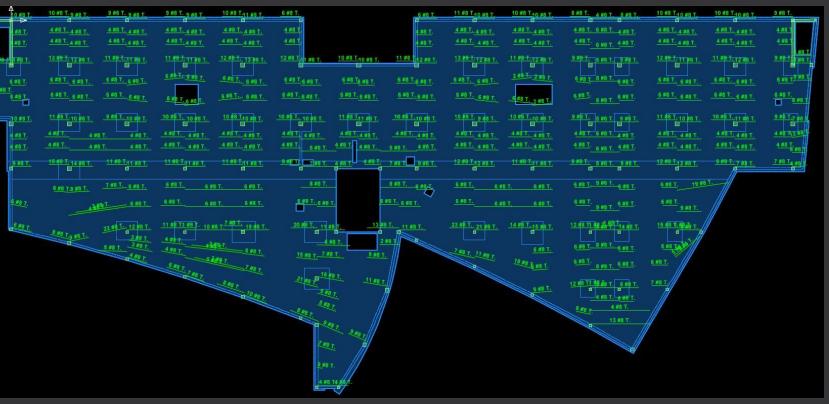

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Structural Depth: Flat Slab Construction

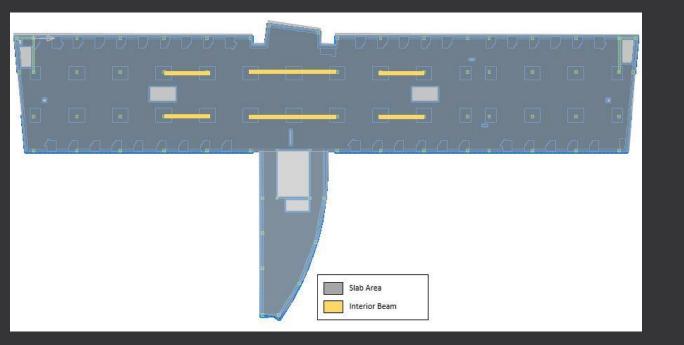
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

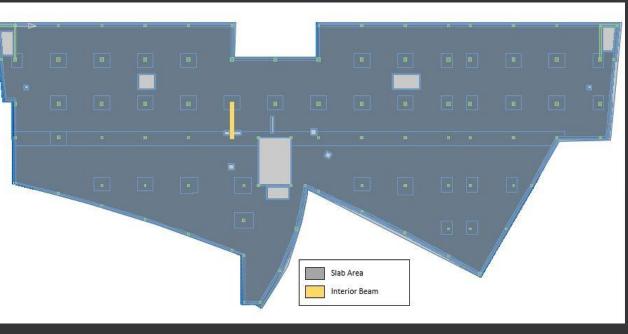

- 10 ½ in. Slab
- 14 in. Slab
- \$\ell\$ drop panel sizing
- Sized to lumber dimension




- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

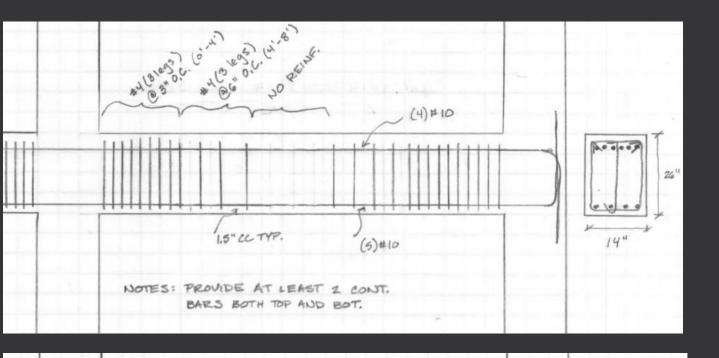


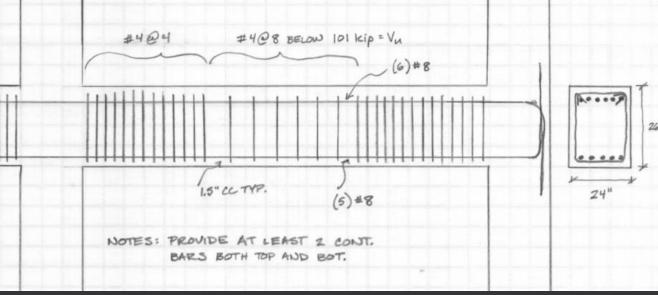


- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

- Edge Beams
 - 14"x26" Typ.

- Transfer Beams
 - -24"x26" Typ.

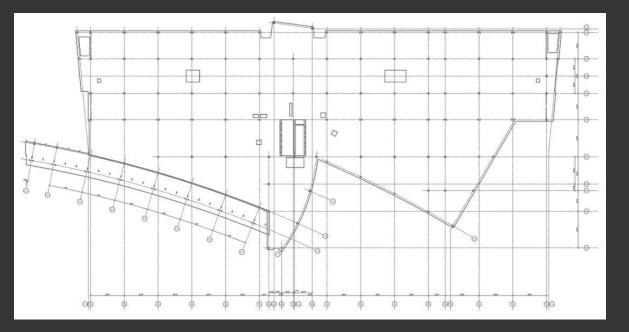

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

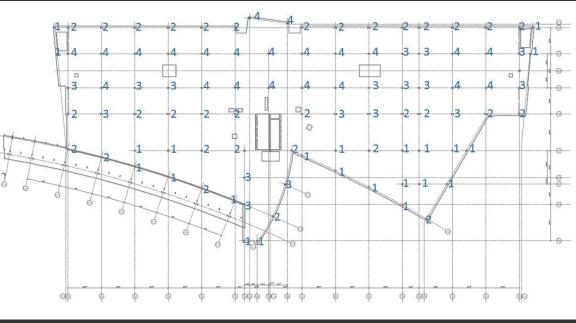

• Edge Beams

- Torsion governed transverse reinf.
- − ℓ/600 for masonry deflections

• Transfer Beams

- Shear governed transverse reinf.

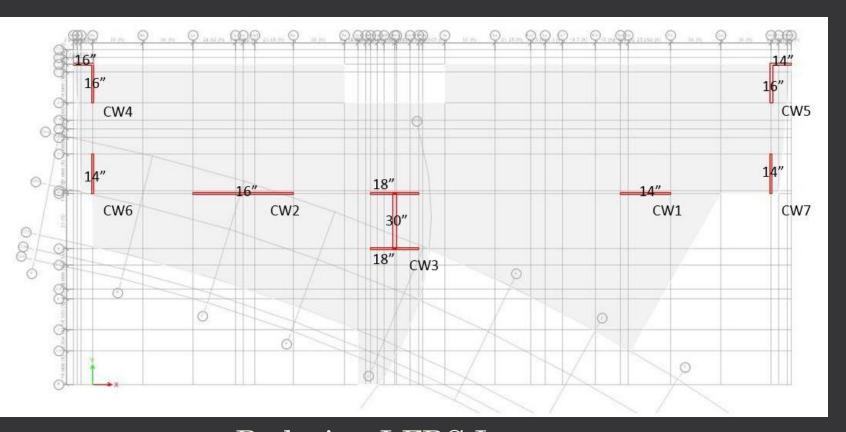



- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - Lateral System
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

• Column Design

- Iterative process
- 4 column sections
- -Max 4% long. reinf.

Column Type	Count (per floor)	Square Dimension (in)	Bars	As	ρ
1	23	16	(8) #10	10.16	0.0397
2	33	20	(12) #10	15.24	0.0381
3	18	24	(16) #10	20.32	0.0353
4	21	26	(16) #11	24.96	0.0369



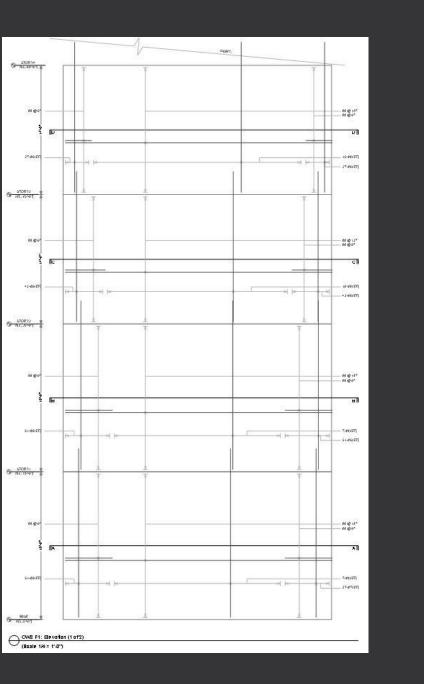
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - <u>Lateral System</u>
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

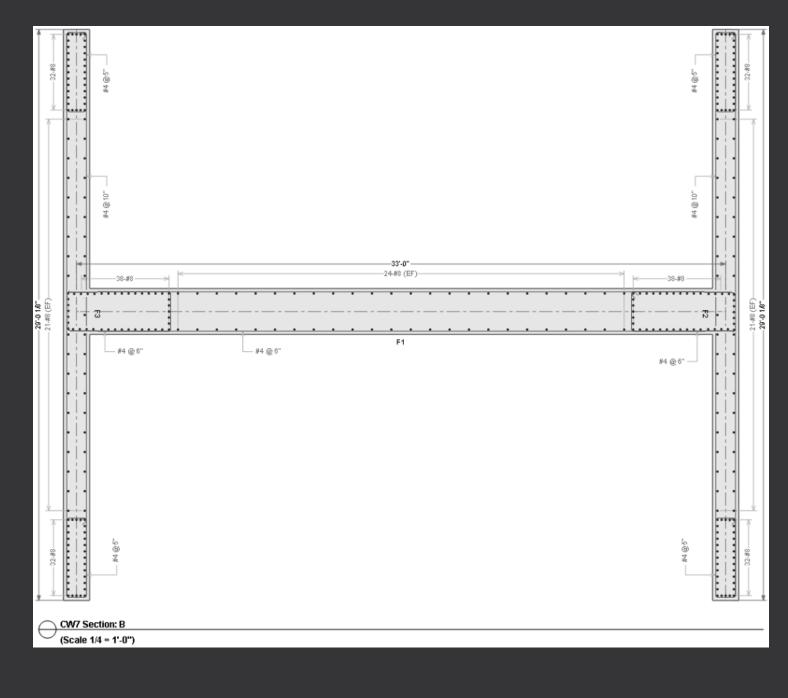
Original LFRS Layout

Redesign LFRS Layout

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - <u>Lateral System</u>
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Seismic Base Shear Comparison


Story	Dia.	Wx (kips)	Hx (ft)	k	Hxk	Wx*Hxk	Cvx	Fx
First Floor	1	5076.9	16.0	1.23	30.7	155682.6	0.1	77.9
Second Floor	2	4987.5	32.0	1.23	72.2	359902.5	0.1	180.1
Third Floor	3	3417.4	46.0	1.23	113.0	385998.0	0.1	193.1
Fourth Floor	4	3417.4	60.0	1.23	156.8	535862.2	0.2	268.1
Fifth Floor	5	3147.4	74.0	1.23	203.1	639381.2	0.2	319.9
Roof	6	3141.9	88.0	1.23	251.6	790509.9	0.3	395.5
Penthouse Roof	7	640.0	106.0	1.23	316.6	202619.7	0.1	101.4
	14	23828.5		5 - 25	- 3	i it		1434.6


Story	Dia.	Wx (kips)	Hx (ft)	k	Hxk	Wx*Hxk	Cvx	Fx
First Floor	1	11036.9	16	1.2	27.47409	303228.83	0.058659	196.8982
Second Floor	2	11124.85	30	1.2	58.23176	647819.57	0.125319	420.6542
Third Floor	3	7313.6	44	1.2	92.02926	673065.22	0.130202	437.0472
Fourth Floor	4	7313.6	58	1.2	128.0255	936327.24	0.18113	607.9933
Fifth Floor	5	7313.6	72	1.2	165.7724	1212393.3	0.234534	787.2537
Sixth Floor	6	6452.6	90	1.2	216.4312	1396543.7	0.270157	906.8296
Penthouse Roof	7	640	108	1.2	269.1172	172234.98	0.033318	111 8388
	85 S	51195.2	200	- 20	20			3356.68

Modal Mass Participation (25 Modes)

Itom	Static	Dynamic
Item	%	%
ΙX	99.94	94.46
ΙΥ	99.98	98.1
ΙZ	0	0

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
 - Flat Slab with Drop Panels
 - Beams
 - Columns
 - <u>Lateral System</u>
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Construction Breadth: Cost and Schedule

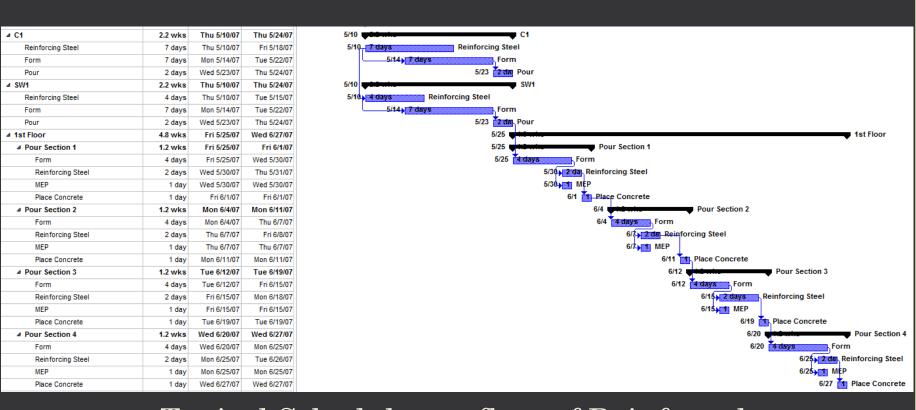
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
 - Weight
 - Cost
 - Schedule
- Landscape Architecture Breadth: Force Protection Design

Structural Weight Comparison

System	Weight	SF	lbs/sf
Composite Steel	23828.5	255760.1	93.2
Flat Slab Reinforced Concrete	51195.2	255760.1	200.2

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
 - Weight
 - Cost
 - Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Reinforced Concrete Estimate


Code	Description	Cost
0311	Forms in Place	\$1,471,661.15
0315	Shores	\$665,732.79
0315	Expansion Joints	\$2,190.59
0321	Rebar Accessories	\$2,329,072.51
0331	Placing Concrete	\$1,652,434.17
	Total Cost:	\$6,121,091.21

Composite Steel Estimate

Code	Description	Cost
140000	Vee-Jay Cement	\$2,339,075.00
190000	Hammert's Iron Works	\$8,784,148.00
980000	10% of Total Fee	\$324,348.90
86 US	Total Structure:	\$11,447,571.90
	SF Ratio:	0.59
86 69	Total for Bed Tower:	\$6,808,911.94

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
 - Weight
 - Cost
 - Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

- Steel Structure:
 - -377 days
- Concrete Structure
 - -381 days
 - Account for sufficient curing time
 - -4 pours per floor

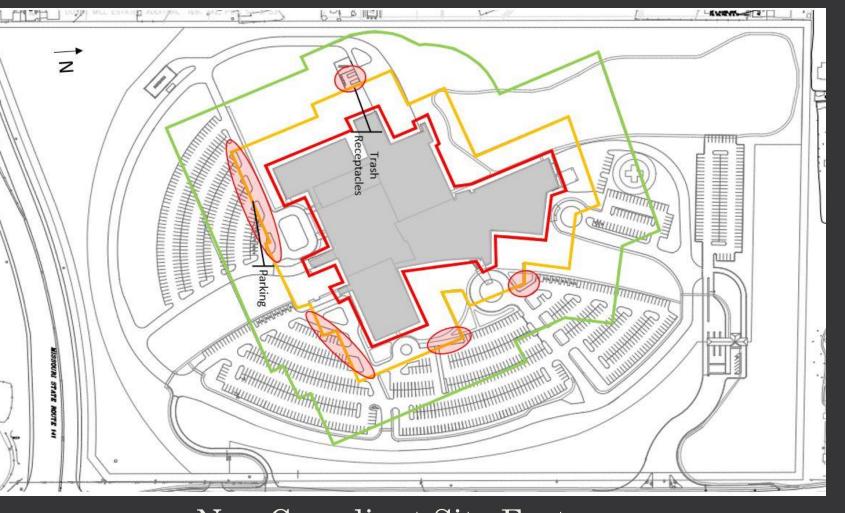
Typical Schedule per floor of Reinforced Concrete Structure

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Landscape Architecture Breadth: Force Protection Design

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - <u>UFC Standoff Distances</u>
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion

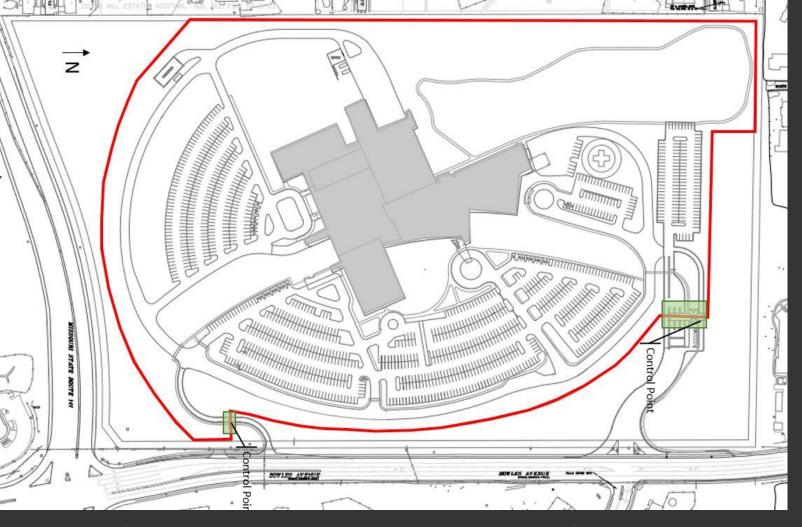
- UFC 4-010-01
 - "DoD Minimum Antiterrorism Standards for Buildings"
- Goal
 - Minimize mass casualties
- Method
 - Identify probable threats
 - Provide safe standoff distances



Standard Standoffs for Billeting and Assembly Structures

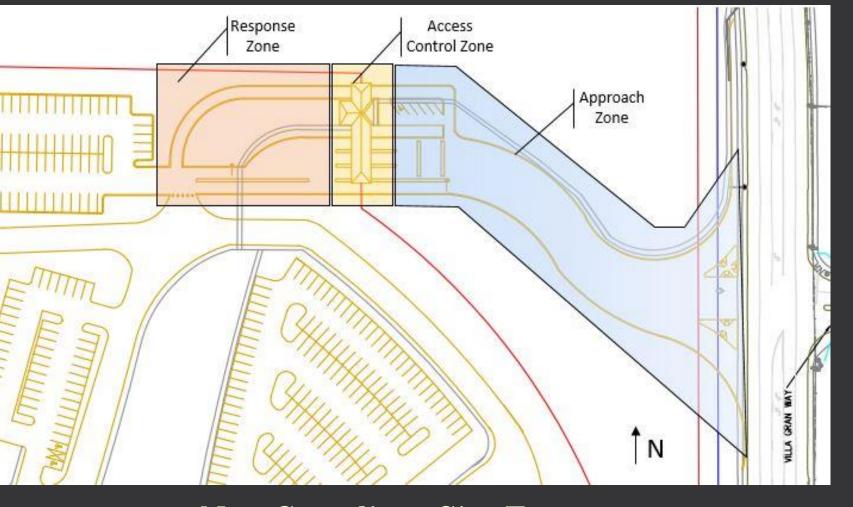
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - <u>UFC Standoff Distances</u>
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion

Standard Construction Standoff


- Min. 82 ft. Standoff
- No parking
- No trash Receptacles
- Unobstructed Zone
 - No foliage below 3'
 - No partial enclosures

Non-Compliant Site Features

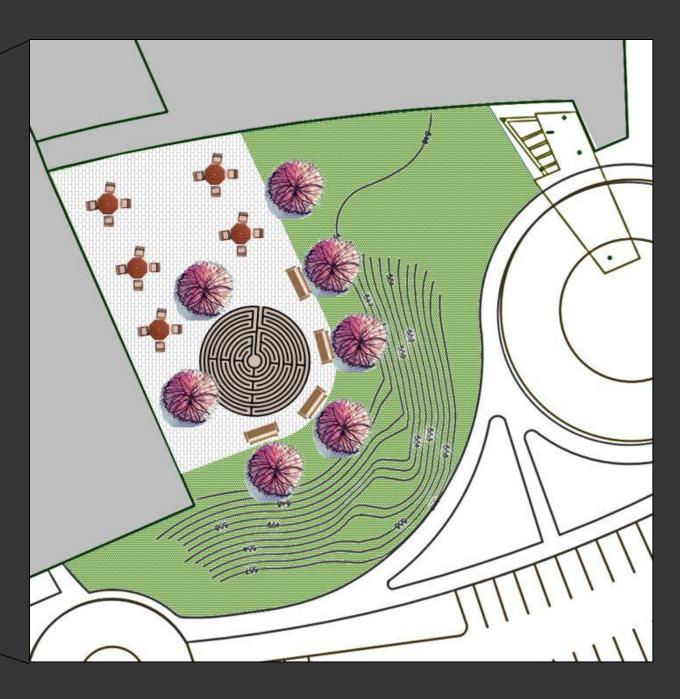
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - <u>Control Perimeter</u>
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion


- Control Perimeter
 - Min. 207' Standoff
- Access Control Facilities

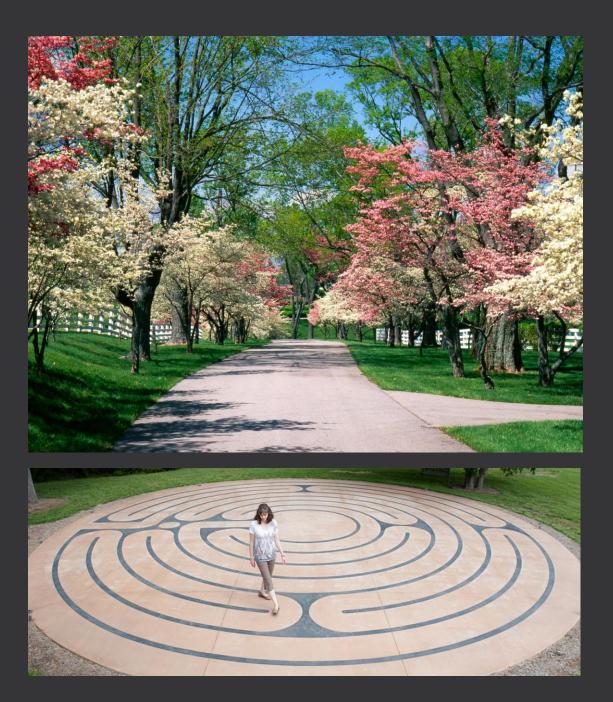
Control Perimeter and Access Control Facilities

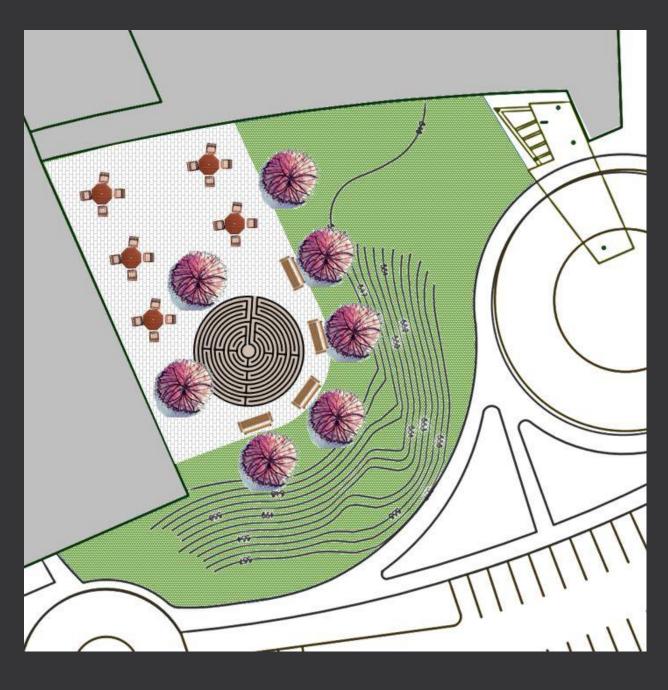
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion

- Access Control Facilities (UFC 4-022-01)
 - Approach Zone
 - Access Control Zone
 - Response Zone
- Final Denial Barrier

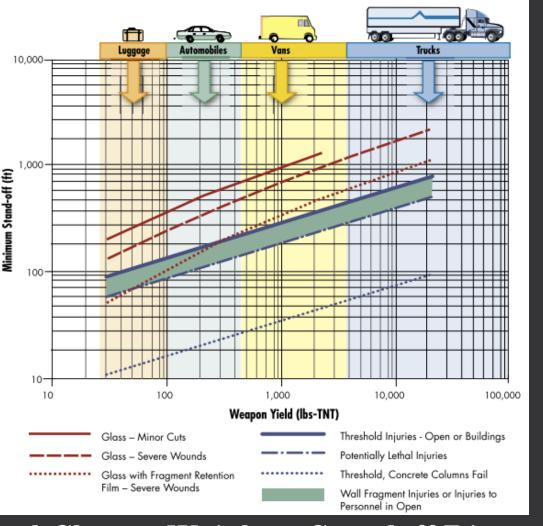


Non-Compliant Site Features

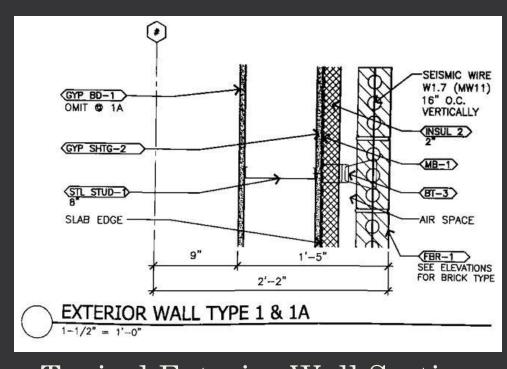

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - Control Perimeter
 - Access Control Facilities
 - <u>Uninterrupted Zone Landscaping</u>
 - Design Validation
- Conclusion



Micro-Design of "Unobstructed Zone" Garden

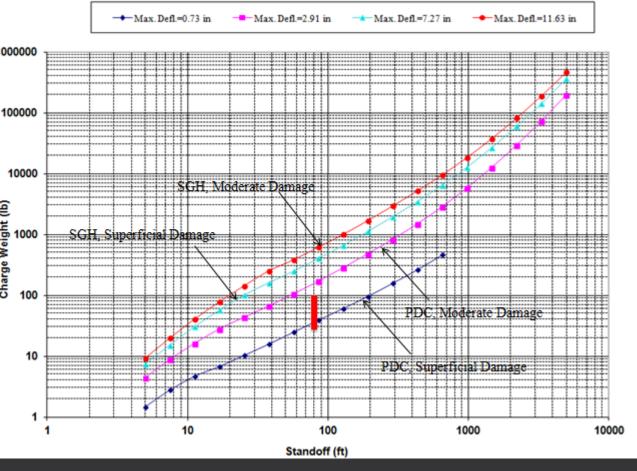


- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion



- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion

Typical Charge Weight – Standoff Diagram



Typical Exterior Wall Section

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
 - UFC Standoff Distances
 - Control Perimeter
 - Access Control Facilities
 - Uninterrupted Zone Landscaping
 - Design Validation
- Conclusion

	$\Delta_{ ext{max}}$	μ_{max}	θ_{max}	
	inch		degree	
DC	856	0.5	374	
GH	H/30 = 6.4	5	7	
heoretical	-1.9	1.31	-1.1	

Blast Response Criteria Comparison

SBEDS Generated Charge-Weight – Standoff Diagram

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

Conclusions

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design
- Conclusion

• Structural Depth

- Feasible Design
- Construction Breadth
 - Feasible Design
 - Save \$687,820.00
 - Comparable schedule to within 4 days
- Landscape Architecture Breadth
 - Feasible Design
 - Provides moderate level of protection
 - Meets UFC design criteria

Feasible Design

- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design

Questions

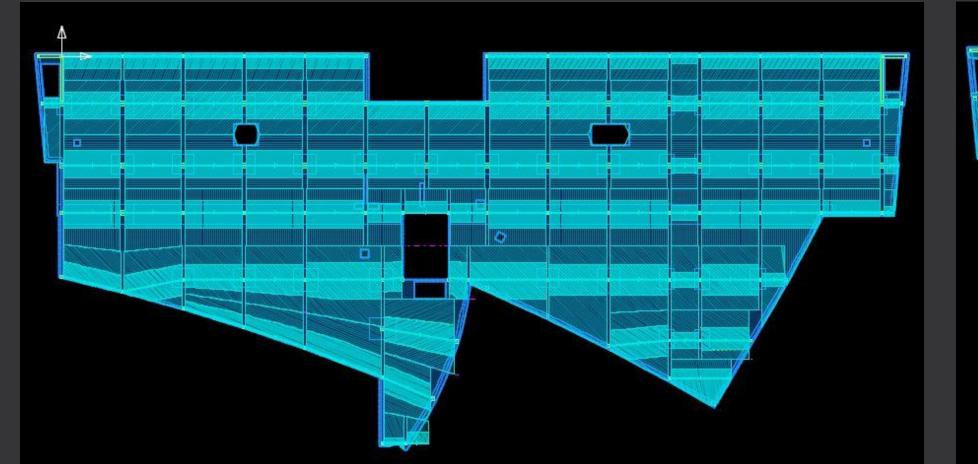
- Overview of Site and Existing Structure
- Depth: Flat Slab Construction
- Construction Breadth: Cost and Schedule
- Landscape Architecture Breadth: Force Protection Design

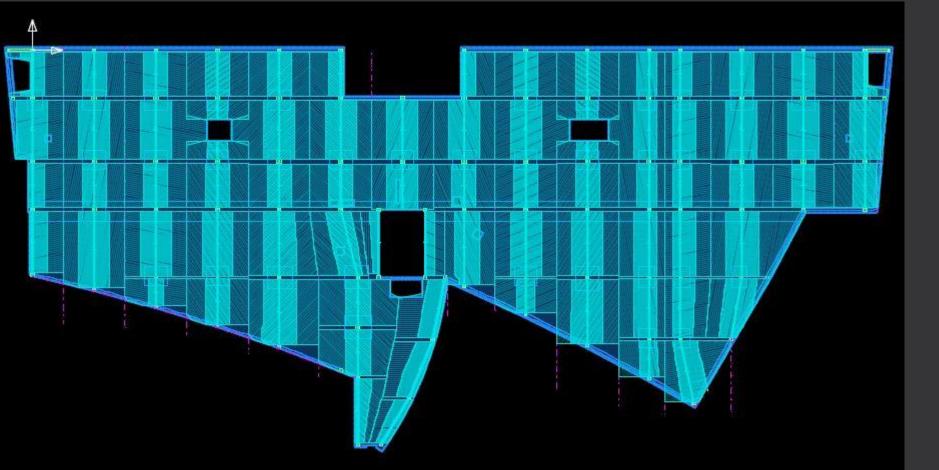
Questions

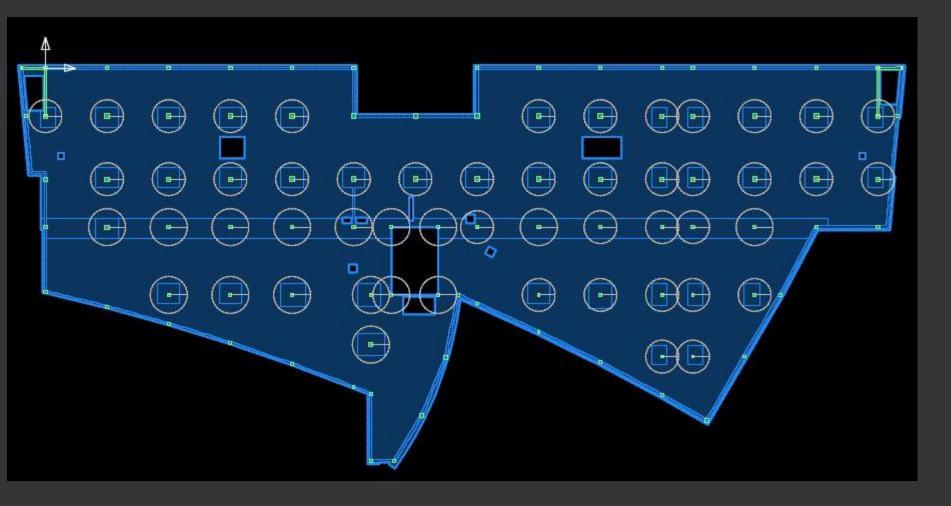
- •Dead and Live Loads
- Wind Loads
- •<u>Seismic Loads</u>
- Slab Concept Output
- Edge Beam Deflections
- •Lateral Assumptions
- ulletLateral Drifts
- •Construction Estimate
- Site Design
 - Standoff Tables
 - Blast Response Criteria
 - SBEDS Output

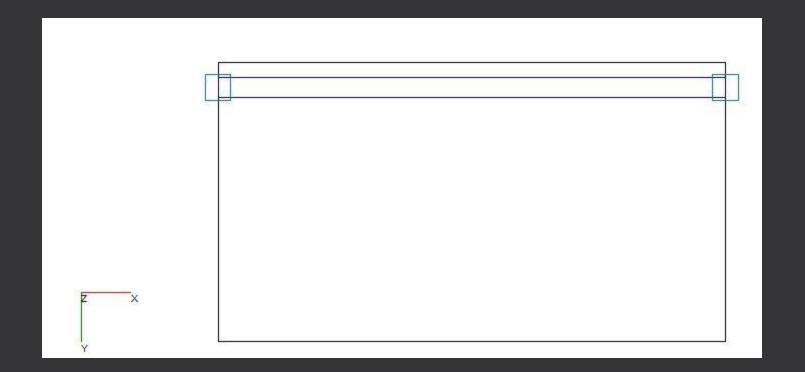
Live Load	Value (psf)	Code Minimum (psf)
Operating Room	60	60
Offices	50	50
Private Rooms	40	40
Corridors (1st Floor)	100	100
Corridors (other)	80	80
Stairs and Exits	100	100
Equipment Rooms	125	125

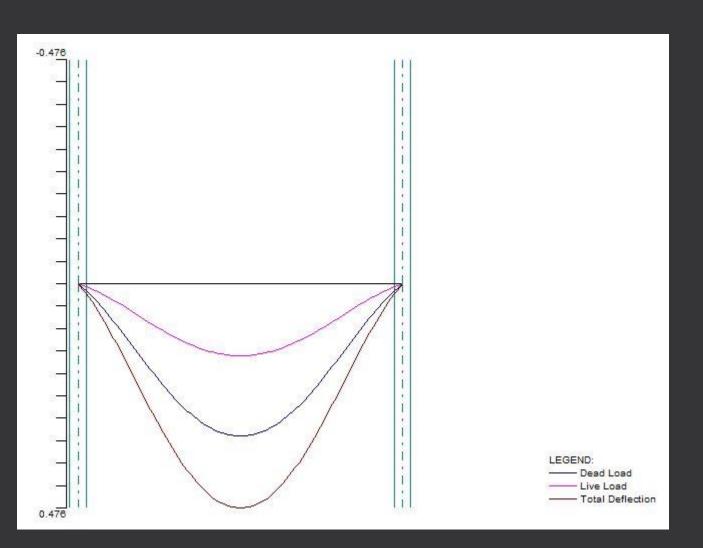
Dead Load	Original Values (psf)	Calculated Values (psf)
Hospital Floor	60	64
Hospital Roof	78	70

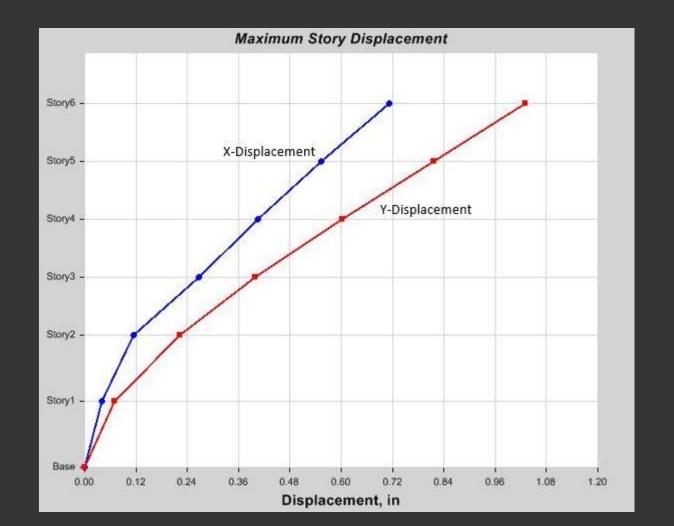

Index	Combinations
1	1.4D
2	1.2D + 1.6L + 0.5(L _r or S or R)
3	$1.2D + 1.6(L_r \text{ or S or R}) + (L \text{ or } 0.5W)$
4	$1.2D + 1.0W + L + 0.5(L_r \text{ or S or R})$
5	1.2D + 1.0E + L + 0.2S
6	0.9D + 1.0W
7	0.9D + 1.0E


Parameter	Symbol	Value
Occupancy Category	-	IV
Basic Wind Speed	V	115 mph
Exposure Category	-	В
Wind Directionality Factor	Kd	0.85
Importance Factor	Ie	1.5
Topographical Factor	Kzt	1
Gust Effect Factor	G	0.8205
Enclosure Classification	9	Enclosed

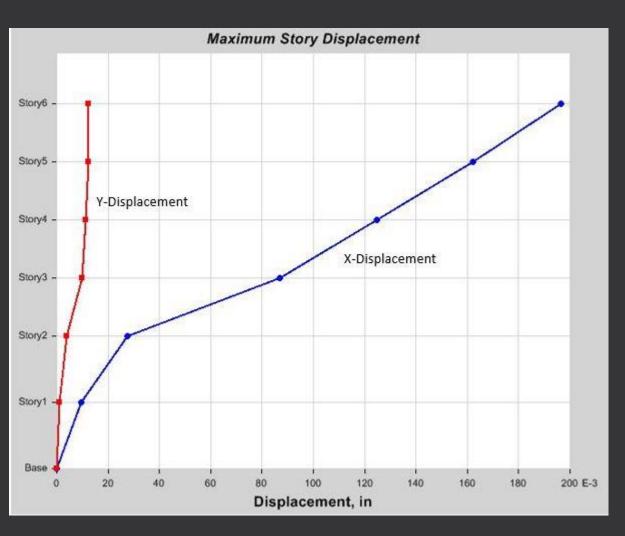

ARM		j	Ext	ernal Press	ure		Internal	Pressure		
		Story			External				Internal	Total
		Height	qzGCp	Tributary	Pressure		qhGCpi	Tributary	Pressure	Pressure
Location	z (ft)	(ft)	(psf)	Width (ft)	(kip)	Gcpi	(psf)	Width	(kip)	(kip)
Windward	-16	16.0	11.0	0.0	0.0	0.18	5.0	0.0	0.0	0.0
	0	16.0	11.0	42.3	0.0	0.18	5.0	0.0	0.0	0.0
	16	14.0	11.2	42.3	7.1	0.18	5.0	0.0	0.0	7.
	30	14.0	13.4	42.3	7.9	0.18	5.0	0.0	0.0	7.9
	44	14.0	14.9	42.3	8.8	0.18	5.0	0.0	0.0	8.8
	58	14.0	16.1	42.3	9.5	0.18	5.0	0.0	0.0	9.5
<u>.</u>	72	18.8	17.2	42.3	11.9	0.18	5.0	0.0	0.0	11.9
	90.75	0.0	18.3	42.3	7.3	0.18	5.0	0.0	0.0	7.3
Leeward	90.75	90.8	-11.5	42.3	43.9	0.18	5.0	0.0	0.0	43.9
Parapet WW	93	2.2	34.6	42.3	3.2	1.5	41.5	0.0	0.0	3.2
Parapet LW	93	2.2	23.1	42.3	2.1	-1	-27.7	0.0	0.0	2.]
TOWER			Ext	emal Press	ure		Internal	Pressure		
Windward	-16	16.0	11.4	0.0	0.0	0.18	5.0	0.0	0.0	0.0
	0	16.0	11.4	224.8	0.0	0.18	5.0	0.0	0.0	0.0
	16	14.0	11.6	224.8	39.0	0.18	5.0	150.0	11.2	50.2
	30	14.0	13.9	374.8	72.7	0.18	5.0	0.0	0.0	72.7
	44	14.0	15.5	374.8	81.1	0.18	5.0	0.0	0.0	81.1
	58	14.0	16.7	374.8	87.7	0.18	5.0	0.0	0.0	87.7
, ,	72	18.8	17.8	374.8	109.1	0.18	5.0	0.0	0.0	109.1
	90.75	0.0	19.0	71.0	12.6	0.18	5.0	0.0	0.0	12.0
Leeward	90.75	90.8	-4.8	374.8	161.6	0.18	5.0	0.0	0.0	161.0
Parapet WW	93	2.2	41.5	374.8	33.7	1.5	41.5	0.0	0.0	33.7
Parapet LW	93	2.2	27.7	374.8	22.5	-1	-27.7	0.0	0.0	374.8
								В	ase Shear:	1085.2

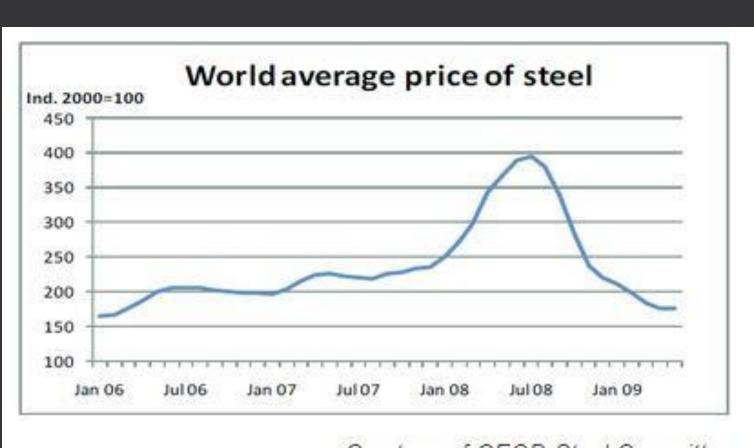

ARM			Ext	emal Press	sure	Internal Pressure				
		Story	2.70.00		External				Internal	Total
		Height	qzGCp	Tributary	Pressure		qhGCpi	Tributary	Pressure	Pressu
Location	z (ft)	(ft)	(psf)	Width (ft)	(kip)	GCpi	(psf)	Width	(kip)	(kip)
Windward	-16	16.0	11.7	0.0	0.0	0.18	5.0	0.0	0.0	0
	0	16.0	11.7	113.8	0.0	0.18	5.0	0.0	0.0	0
0	16	14.0	11.9	113.8	20.3	0.18	5.0	0.0	0.0	20
	30	14.0	14.2	113.8	22.6	0.18	5.0	0.0	0.0	22
0	44	14.0	15.8	113.8	25.2	0.18	5.0	0.0	0.0	25
	58	14.0	17.1	113.8	27.3	0.18	5.0	0.0	0.0	27
0	72	18.8	18.2	113.8	34.0	0.18	5.0	0.0	0.0	34
	90.75	0.0	19.5	67.0	12.2	0.18	5.0	0.0	0.0	12
Leeward	90.75	90.8	-7.3	113.8	75.4	0.18	5.0	0.0	0.0	75
Parapet WW	93	2.2	0.0	113.8	0.0	1.5	41.5	0.0	0.0	0
Parapet LW	93	2.2	0.0	113.8	0.0	-1	-27.7	0.0	0.0	0
TOWER			Ext	ernal Press	sure		Internal 1	Pressure		
Windward	-16	16.0	10.5	0.0	0.0	0.18	5.0	0.0	0.0	0
	0	16.0	10.5	0.0	0.0	0.18	5.0	0.0	0.0	0
0	16	14.0	10.7	0.0	0.0	0.18	5.0	77.3	5.8	5
	30	14.0	12.7	77.3	13.8	0.18	5.0	0.0	0.0	13
0	44	14.0	14.2	77.3	15.4	0.18	5.0	0.0	0.0	15
	58	14.0	15.4	77.3	16.7	0.18	5.0	0.0	0.0	16
0	72	18.8	16.4	77.3	20.7	0.18	5.0	0.0	0.0	20
	90.75	0.0	17.5	31.0	5.1	0.18	5.0	0.0	0.0	5
Leeward	90.75	90.8	-10.9	77.3	76.7	0.18	5.0	0.0	0.0	76
Parapet WW	93	2.2	33.0	77.3	5.5	1.5	41.5	0.0	0.0	5
Parapet LW	93	2.2	22.0	77.3	3.7	-1	-27.7	0.0	0.0	77.
								В	ase Shear:	454


Story	Dia.	Wx (kips)	Hx (ft)	k	Hxk	Wx*Hxk	Cvx	Fx	Story	Dia.	Wx (kips)	Hx (ft)	k	Hxk	Wx*Hxk	Cvx	F
First Floor	1	5076.9	16.0	1.23	30.7	155682.6	0.1	77.9	First Floor	1	11036.9	16	1.2	27.47409	303228.83	0.058659	196.8
Second Floor	2	4987.5	32.0	1.23	72.2	359902.5	0.1	180.1	Second Floor	2	11124.85	30	1.2	58.23176	647819.57	0.125319	420.6
Third Floor	3	3417.4	46.0	1.23	113.0	385998.0	0.1	193.1	Third Floor	3	7313.6	44	1.2	92.02926	673065.22	0.130202	437.0
Fourth Floor	4	3417.4	60.0	1.23	156.8	535862.2	0.2	268.1	Fourth Floor	4	7313.6	58	1.2	128.0255	936327.24	0.18113	607.9
Fifth Floor	5	3147.4	74.0	1.23	203.1	639381.2	0.2	319.9	Fifth Floor	5	7313.6	72	1.2	165.7724	1212393.3	0.234534	787.2
Roof	6	3141.9	88.0	1.23	251.6	790509.9	0.3	395.5	Sixth Floor	6	6452.6	90	1.2	216.4312	1396543.7	0.270157	906.8
Penthouse Roof	7	640.0	106.0	1.23	316.6	202619.7	0.1	101.4	Penthouse Roof	7	640	108	1.2	269.1172	172234.98	0.033318	111.8
	114	23828.5		8 8			30	1434.6		95. V	51195.2			8 2		S	3356

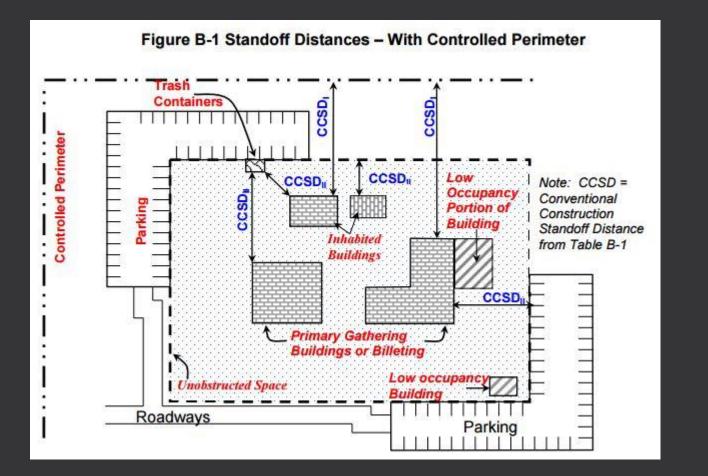

Lateral Component	Element Type	Assumptions	Modifiers
Special Reinforced Concrete Shear Walls	Thin-Shell	· No out-of-plane rigidity	· Self-weight factor set to 1.0
		· Shear wall fixed at ground level	· Moment in-plane set to 0.7 per ACI 318-
		 Shell method is more accurate than frame method. 	Shear modifiers out-of-plane set to zero.
		 All floors are cracked (designed as "special" reinforced shear walls for ductility) 	
Diaphragms	N/A	- Semi-rigid diaphragm	· Self-weight factor set to zero
		 Center of diaphragm mass is center of story mass 	 Superimposed mass equal to total of floor assembly, facades, shear walls, and partition
		Continuous over entire level.	570 SF
		· Penthouse loads applied at 6th story COM.	
		· Mass distributed uniformly	

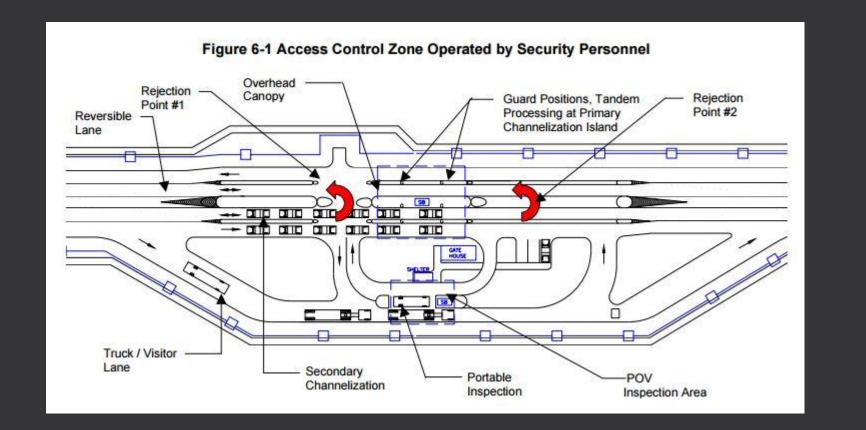
Story	Px	Δ	le	Vx	Hsx	Cd	θ
1	51195.15	0.070991	1.5	365.84	192	5	0.01552
2	40158.28	0.221664	1.5	701.28	192	5	0.01983
3	29033.43	0.398928	1.5	671.38	168	5	0.03081
4	21719.82	0.601727	1.5	889.53	168	5	0.02624
5	14406.22	0.81551	1.5	1108.67	168	5	0.01892
6	6452.00	1.030091	1.5	1253.50	168	5	0.00947
7	640.00	1.24467	1.5	153.72	216	5	0.00720


Base Shear XBase Shear Y ModalX Max 1679.357 1059.403 ModalY Max 728.667 3219.239 Seismic 1 -3411.224 Seismic 2 -4992.871 -2899.5404 .85 Seismic 1 .85 Seismic 2 -4243.94035 X-Case Y-Case Scalar 1.726577732 1.31830546 Current 100% 96.6 28.98 Current 30% 166.787409 127.34831 Scale Factor 100% 38.2044922 50.036223 Scale Factor 30%


96.6

28.98





Courtesy of OECD Steel Committee.

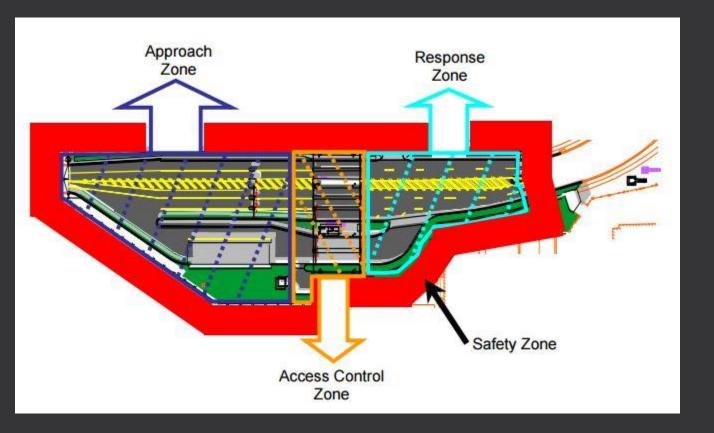
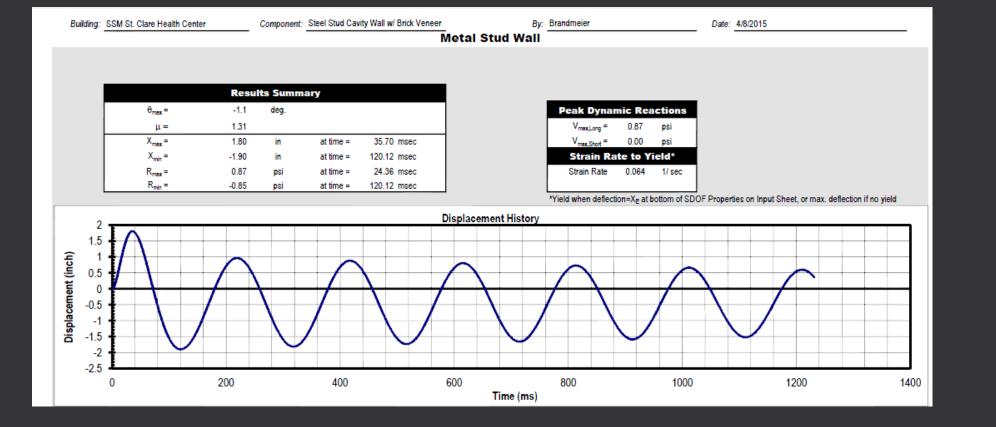
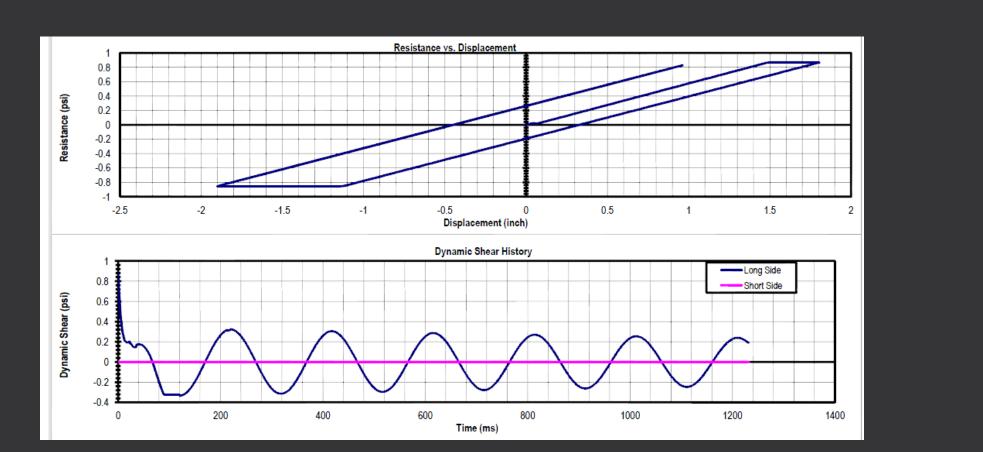


Table B-2 Conventional Construction Standoff Distances

		Column Letter											
	250 P. S. S.		olled Perin losive Wei		Wit Applica	thin Contr ble Explo	olled Perim sive Weigh	eter t II ^{\1\(5)}					
Wall Type \(\frac{11 \ (1, 6) \ /1/}{2}		Bearing Ills		d Bearing	Load B Wa	200	Non-Load Beari Walls						
	A PG & BIL LLOP	B INHAB VLLOP	C PG & BIL LLOP	D INHAB VLLOP	E PG & BIL LLOP	F INHAB VLLOP	G PG & BIL LLOP	INHA VLLC					
Wood Studs -	105 ft	105 ft	79 ft	66 ft	36 ft	36 ft	23 ft	16 f					
Brick Veneer	(32 m)	(32 m)	(24 m)	(20 m)	(11 m)	(11 m)	(7 m)	(5 m					
Wood Studs -	207 ft	207 ft	164 ft	141 ft	86 ft	86 ft	66 ft	56 f					
EIFS	(63 m)	(63 m)	(50 m)	(43 m)	(26 m)	(26 m)	(20 m)	(17 n					
Metal Studs -	187 ft	187 ft	207 ft ⁽³⁾	187 ft ⁽³⁾	75 ft	75 ft	82 ft ⁽³⁾	75 ft					
Brick Veneer	(57 m)	(57 m)	(63 m)	(57 m)	(23 m)	(23 m)	(25 m)	(23 n					
Metal Studs -	361 ft	361 ft	420 ft ⁽³⁾	361 ft ⁽³⁾	151 ft	151 ft	167 ft ⁽³⁾	151 f					
EIFS	(110 m)	(110 m)	(128 m)	(110 m)	(46 m)	(46 m)	(51 m)	(46 n					
Metal Panels	n/a ⁽²⁾	n/a ⁽²⁾	151 ft	108 ft	n/a ⁽²⁾	n/a ⁽²⁾	56 ft	39 f					
		,	(46 m)	(33 m)			(17 m)	(12 n					
Girts	n/a ⁽²⁾	n/a ⁽²⁾	115 ft	59 ft	n/a ⁽²⁾	n/a ⁽²⁾	23 ft	16 f					
			(35 m)	(18 m)			(7 m)	(5 m					
Reinforced	66 ft	66 ft	26 ft	20 ft	16 ft	16 ft	13 ft	13 f					
Concrete	(20 m)	(20 m)	(8 m)	(6 m)	(5 m)	(5 m)	(4 m)	(4 m					
Unreinforced	262 ft	262 ft	125 ft	33 ft	80 ft	80 ft	26 ft	16 f					
Masonry ⁽⁴⁾	(80 m)	(80 m)	(38 m)	(10 m)	(24 m)	(24 m)	(8 m)	(5 m					
Reinforced	86 ft	86 ft	30 ft	20 ft	30 ft	30 ft	13 ft	13 f					
Masonry	(26 m)	(26 m)	(9 m)	(6 m)	(9 m)	(9 m)	(4 m)	(4 m					
European Block	164 ft	164 ft	59 ft	30 ft	39 ft	39 ft	23 ft	16 f					
	(50 m)	(50 m)	(18 m)	(9 m)	(12 m)	(12 m)	(7 m)	(5 m					
\1\ Roof Construction in Table 2-3 /1/		20 ft	(6 m)			13 fi	(4 m)	**					


Table 2-3 Conventional Construction Parameters


			Analysis	Assumptio	ns ^(2, 9)		
Wall or Roof Type ⁽¹⁾	Sections	Span	Spacing	Support Condition	Supported Weight ⁽⁵⁾	Reinforcement Ratio	Min Stati Mater Streng
Wood Studs – Brick Veneer	2x4 & 2x6 in (50x100 & 50x150 mm)	8 – 10 ft (2.4 - 3 m)	16 - 24 in (400 – 600 mm)	S-S	44 psf (215 kg/m²)	N/A	875 p (6 MP
Wood Studs - EIFS	2x4 & 2x6 in (50x100 & 50x150 mm)	8 – 10 ft (2.4 – 3 m)	16 -24 in (400 -600 mm)	S-S	10 psf (49 kg/m²)	N/A	875 p (6 MP
Steel Studs – Brick Veneer ⁽³⁾	600S162-43 600S162-54 600S162-68	8 – 12 ft (2.4 – 3.7 m)	16 - 24 in (400 – 600 mm)	S-S	44 psf (215 kg/m²)	N/A	50,00 psi (345 MPa
Steel Studs – EIFS ⁽³⁾	600S162-43 600S162-54 600S162-68	8 – 12 ft (2.4 – 3.7 m)	16 - 24 in (400 – 600 mm)	S-S	10 psf (49 kg/m²)	N/A	50,00 psi (345 MPa
Metal Panels ⁽⁶⁾ (in wall or roof construction)	1.5 – 3 in (38 - 76 mm) 22, 20, & 18 ga	4 – 8 ft (1.2 - 2.4 m)	N/A	S-S	10 psf (49 kg/m²)	N/A	33,00 psi (2 MPa
Girts ⁽⁶⁾ (in wall or roof construction)	8Z3 &10Z3 16, 14, & 12 ga	20 – 25 ft (6 – 7.6 m)	6 – 8 ft (1.8 – 2.4 m)	S-S	5 psf (24 kg/m²)	N/A	50,00 psi (345 MPa
Reinforced Concrete ⁽⁷⁾	≥ 6 in (≥ 150 mm)	12 – 20 ft (3.7- 6 m)	N/A	S-S, One way flexure	10 psf (49 kg/m²)	≥ 0.0015	3,000 (21 Mi
Unreinforced Masonry ^(4, 8)	6 – 12 in (150 – 300 mm)	8 – 12 ft (2.4 – 3.7 m)	N/A	S-S, One way flexure	10 psf (49 kg/m²)	0	1,500 (10 MI

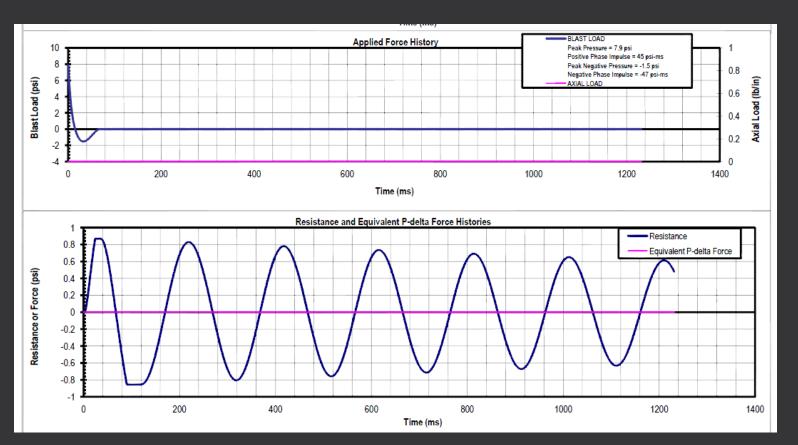

Component	Element Properties	Assumptions
Steel Studs	800S162-54 Section	Bending about strong (X-X) axis
	A653, Grade 33 (cold-formed steel)	No Dynamic Axial Load
		Standard Web Punch Outs
		Simply supported
		Connected top and bottom
Veneer Wall	4 in. Brick	40 psi allowable tension stress
	S or M type mortar	
General Wall	0.354	32 ft. Tall
		100 ft. Wide
		Flexural and Tension Membrane
		1% Critical Damping

Table 3-1 Component Damage Levels Relationship to Response Limits

Component Damage Level	Relationship to Response Limits
Blowout	Response greater than B4.
Hazardous Failure	Response between B3 and B4
Heavy Damage	Response between B2 and B3.
Moderate Damage	Response between B1 and B2.
Superficial Damage	Response is less than B1.

